Publications

Google Scholar Profile

Peer-Reviewed Publications

[16] Buhler, P.B., 2023. A 510,000‐Year Record of Mars’ Climate. Geophysical Research Letters, 50(5), p.e2022GL101752. https://doi.org/10.1029/2022GL101752 Download PDF

[15] Wynne, J.J., Mylroie, J.E., Titus, T.N., Malaska, M.J., Buczkowski, D.L., Buhler, P.B., Byrne, P.K., Cushing, G.E., Davies, A.G., Frumkin, A. and 20 others, 2022. Planetary caves: A solar system view of processes and products. Journal of Geophysical Research: Planets, 127(11), p.e2022JE007303. https://doi.org/10.1029/2022JE007303 Download PDF

[14] Becerra, P., Smith, I.B., Hibbard, S., Andres, C., Bapst, J., Bramson, A., Buhler, P.B., Coronato, A., Diniega, S., Emmett, J., and 12 others, 2021. Past, Present, and Future of Mars Polar Science: Outcomes and outlook from the 7th International Conference on Mars Polar Science and Exploration. Planetary Science Journal 2(209). doi: 10.3847/PSJ/ac19a5 Download PDF

[13] Titus, T.N., Wynne, J.J., Malaska, M.J., Agha-Mohammadi, A.A., Buhler, P.B., Alexander, E.C., Ashley, J.W., Azua-Bustos, A., Boston, P.J., Buczkowski, D.L. and 32 others, 2021. A roadmap for planetary caves science and exploration. Nature Astronomy, 5(6), pp.524-525. doi.org/10.1038/s41550-021-01385-1 Download PDF

[12] Buhler, P. and Piqueux, S., 2021. Obliquity‐Driven CO2 Exchange Between Mars’ Atmosphere, Regolith, and Polar Cap. Journal of Geophysical Research: Planets 126, p. e2020JE006759. doi: 10.1029/2020JE006759 Download PDF

[11] Diniega, S., Bramson, A.M., Buratti, B., Buhler, P., Burr, D.M., Chojnacki, M., Conway, S.J., Dundas, C.M., Hansen, C.J., McEwen, A.S. and Lapôtre, M.G., 2021. Modern Mars’ geomorphological activity, driven by wind, frost, and gravity. Geomorphology, p.107627.doi: 10.1016/j.geomorph.2021.107627 Download PDF

[10] Moore, K., Courville, S., Ferguson, S., Schoenfeld, A., Llera, K., Agrawal, R., Buhler, P., Brack, D., Connour, K., Czaplinski, E. and 14 others, 2020. Bridge to the stars: A mission concept to an interstellar object. Planetary and Space Science, p.105137. doi: 10.1016/j.pss.2020.105137 Download PDF

[9] Smith, I.B., Hayne, P.O, Byrne, S., Becerra, P., Kahre, M., Calvin, W., Hvidberg, C., Milkovich, S., Buhler, P.B., Landis, M., and 28 others, 2020. The Holy Grail: A road map for unlocking the climate record stored within Mars’ polar layered deposits. Planetary and Space Sciences, p. 104841. https://doi.org/10.1016/j.pss.2020.104841 Download PDF

[8] Buhler, P.B., Ingersoll, A.P., Piqueux, S., Ehlmann, B.L., Hayne, P.O., 2019. Coevolution of Mars’s atmosphere and massive south polar CO2 ice deposit. Nature Astronomy. doi.org/10.1038/s41550-019-0976-8 Download PDF

[7] Buhler, P.B. and Ingersoll, A.P., 2018. Sublimation Pit Distribution Indicates Convection Cell Surface Velocities of ~10 Centimeters per Year in Sputnik Planitia, Pluto. Icarus 300, 327-340. doi.org/10.1016/j.icarus.2017.09.018 Download PDF

[6] Buhler, P.B., Ingersoll, A.P., Ehlmann, B.L., Fassett, C.I., Head, J.W., 2017. How the Martian Residual South Polar Cap Develops Quasi-Circular and Heart-Shaped Pits, Troughs, and Moats. Icarus 286, 69-93.  doi:10.1016/j.icarus.2017.01.012 Download PDF

[5] Buhler, P.B. and Grey, M., 2016. Xiphosuran Digging Traces at the Late Carboniferous Joggins Fossil Cliffs UNESCO World Heritage Site, Nova Scotia, Canada. Ichnos 23, 1-12.  doi:10.1080/10420940.2016.1244055 Download PDF

[4] Buhler, P.B., Knutson, H.A., Batygin, K., Fulton, B.J., Fortney, J.J., Burrows, A., Wong, I., 2016. Dynamical Constraints on the Core Mass of Hot Jupiter HAT-P-13b. The Astrophysical Journal 821, 26-37.  doi:10.3847/0004-637X/821/1/26 Download PDF

[3] Artieda, O., Davila, A.F., Wierzchos, J., Buhler, P.B., Rodríguez-Ochoa, R., Pueyo, J.J. and Ascaso, C., 2015. Surface evolution of salt-encrusted playas under extreme and continued dryness. Earth Surface Processes and Landforms 40 (14), 1939-1950. doi:10.1002/esp.3771 Download PDF

[2] Buhler, P.B., Fassett, C.I., Head, J.W., Lamb, M.P., 2014. Timescales of Fluvial Activity and Intermittency at Milna Crater, Mars. Icarus, 241, 130-147. doi:10.1016/j.icarus.2014.06.028 Download PDF

[1] Buhler, P.B., Fassett, C.I., Head, J.W., Lamb, M.P., 2011. Evidence for Paleolakes in Erythraea Fossa, Mars: Implications for an Ancient Hydrological Cycle. Icarus, 213, 104-115. doi:10.1016/j.icarus.2011.03.004 Download PDF

Conference Abstracts

[31] Buhler, P.B., 2023, Paleo-Extent of Mars’ Massive CO2 Ice Deposit. LPSC 2023, #1223

[30] Buhler, P.B., 2023. A 510,000-Year History of Mars’ Global Water Transport. LPSC 2023, #1222

[29] Smith, I.B., Schlegel, N., Larour, E., Isola, I., Buhler, P., Putzig, N. E., and Greve, R. 2022. CO2 Glaciers on the South Polar Layered Deposits of Mars. LPSC 2022, #2511

[28] Buhler, P. B., 2022. Mars’ Noachian-Hesperian Intensive Fluvial Activity Driven by Atmospheric Collapse. LPSC 2022, #1013

[27] Buhler, P. B. and Smith, I. B., 2022. Mars’ South Polar Carbon Dioxide Glacier Crevasses. LPSC 2022, #1014

[26] Buhler, P. B. and Piqueux, S., 2021. Mars’ Obliquity-Driven Mobile CO2 Inventory Derived from Polar Stratigraphy. LPSC 2021, #2218 [25] Smith, I. B., Schlegel, N., Larour, E., Isola, I., Buhler, P., Putzig, N. E., and Greve, R. 2021. CO2 Glaciers on the South Polar Layered Deposits of Mars. LPSC 2021, #2573

[25] Smith, I. B., Schlegel, N., Larour, E., Isola, I., Buhler, P., Putzig, N. E., and Greve, R. 2021. CO2 Glaciers on the South Polar Layered Deposits of Mars. LPSC 2021, #2573

[24] Buhler, P.B. and Piqueux, S., 2020. Mars’ Massive CO2 Ice Deposit Stratigraphy Indicates Mars’ Exchangeable CO2 inventory is ≤ 33 mbar. LPSC 2020, #1549

[23] Courville, S.W., Moore, K., Connour, K., Ferguson, S., Agrawal, R., Brack, D., Buhler, P., Czaplinski, E., DeLuca, M., Deautsch, A., and 14 others. Bridge to the Stars: A Mission Concept to an Interstellar Object. LPSC 2020, #1766

[22] Buhler, P.B., Piqueux, S., Ingersoll, A.P., Ehlmann, B.L., Hayne, P.O., 2020. Co-Evolution of the Martian Atmosphere and South Polar Massive CO2 Deposit. 7th Int. Conf. Mars Polar Sci. #6006

[21] Buhler, P.B., Piqueux, S., Ingersoll, A.P., Ehlmann, B.L., Hayne, P.O., 2019. The Co-Evolution of Mars’ Atmosphere and Massive South Polar CO2 Deposit. AGU P51C-01

[20] Buhler, P.B., Piqueux, S., Ingersoll, A.P., Ehlmann, B.L., Hayne, P.O., 2019.The Co-Evolution of Mars’ Atmosphere and South Polar Massive CO2 Ice Deposit. 51st DPS-EPSC. #31

[19] Buhler, P.B., Piqueux, S., Ingersoll, A.P., Ehlmann, B.L., Hayne, P.O., 2019. The Co-Evolution of Mars’ Atmosphere and Massive South Polar CO2 Ice Deposit. 9th Int. Conf. Mars. #6008

[18] Buhler, P.B., Piqueux, S., Ingersoll, A.P., Ehlmann, B.L., Hayne, P.O., 2019. The Origin, Age, and Stratigraphy of Mars’ Massive South Polar CO2 Deposit and Its Control of Mars’ Atmospheric Pressure. 50th LPSC. #1031

[17] Buhler, P.B., Dickson, J., Ehlmann, B.L., Ingersoll, A.P., Byrne, S., Tao, Y., Muller, J-P., 2018. Prospects for Measuring Vertical Change on the Martian Residual South Polar Cap Using HiRISE Digital Elevation Models. 49th LPSC. #2908

[16] Buhler, P.B., Piqueux, S., Ingersoll, A.P., Ehlmann, B.L., Hayne, P.O., 2018. EnTOMBR: An Energy Balance Model for Exploring the Sequestration of the Massive Martian Buried CO2 Ice Deposit. 49th LPSC. #2878

[15] Buhler, P.B. & Ingersoll, A.P., 2017. Sputnik Planitia, Pluto Convection Cell Surface Velocities of ~10 Centimeters per Year Based on Sublimation Pit Distribution. 49th DPS. #102.04

[14] Buhler, P.B., Fassett, C.I., Head, J.W., Lamb, M.P., 2017. Fluvial Volumes, Timescales, and Intermittency in Milna Crater, Mars. 4th Early Mars. #3053

[13] Carberry Mogan, S.R., Kurzrok, A., Anand, A., Ben Hamida, S., Buhler, P.B., and 11 others, 2017. Caltech Space Challenge – Lunarport: Lunar Extraction for Extraterrestrial Prospecting (LEEP). AIAA SPACE Forurm. #2017-5373

[12] Buhler, P.B. & Ingersoll, A.P., 2017. Sublimation Pit Distribution Indicates Convection Cell Surface Velocity of ~10 Centimeters per Year in Sputnik Planitia, Pluto. 48th LPSC. #1746

[11] Buhler, P.B., Ingersoll, A.P., Ehlmann, B.L., Fassett, C.I., Head, J.W., 2016. New Observations Reveal How the Martian Residual South Polar Cap Develops Quasi-Circular Pits, Heart-Shaped Pits, Troughs, and Moats. DPS 48. #513.01

[10] Buhler, P.B., Ingersoll, A.P., Ehlmann, B.L., Fassett, C.I., Head, J.W., 2016. New Observations Reveal How the Martian South Polar Residual Cap Develops Heart-Shaped and Quasi-Circular Pits, Troughs, and Moats. 6th Int. Conf. Mars Pol. Sci. #6070

[9] Buhler, P.B., Fassett, C.I., Head, J.W., Lamb, M.P., 2016. Timescales of Fluvial Activity and Intermittency in Milna Crater, Mars. 47th LPSC. #2587

[8] Buhler, P.B., Knutson, H.K., Batygin, K., Fulton, B.J., Burrows, A., Fortney, J., 2016. Dynamical Constraints on the Core Mass of Hot Jupiter HAT-P-13b. 227th AAS. #406.07

[7] Buhler, P.B., Ingersoll, A.P., Ehlmann, B.L., Fassett, C.I., Head, J.W., 2016. How the Martian South Polar Residual Cap Loses Mass. 47th LPSC. #2550

[6] Buhler, P.B., Knutson, H.K., Batygin, K., 2015. Dialing the Love Number of Hot Jupiter HAT-P-13b. 2015 Division on Dynamical Astronomy Meeting. #46

[5] Wong, M.L., Ingersoll, A.P., Ehlmann, B.L., Pilorget, C., Buhler, P.B., 2014. The Case for Stable Entombed CO2 in Mars’ South Polar Layered Deposits. 8th Int. Conf. Mars. #1472.

[4] Buhler, P.B., Day, K., Grotzinger, J.P., Calef, F., 2011. The Search for Fresh Craters in the MSL Landing Ellipses. Fifth Mars Science Laboratory Landing Site Workshop.

[3] Day, M.D., Calef, F.J., Buhler, P.B., Grotzinger, J.P., 2011. Small Crater Analysis of the Mars Science Laboratory Landing Site. 42nd LPSC. #P33C-1773

[2] Buhler, P.B., Hydrological Context for Holden and Eberswalde Craters: A Study of Eythraea Fossa, 2010. Fourth Mars Science Laboratory Landing Site Workshop.

[1] Buhler, P.B., Head, J.W., Lamb, M.P., 2009. Fluvial Activity in Erythraea Fossa: A System of Three Open Basin Paleolakes. Brown-Vernadsky Microsymposium.


Download My CV

pbuhler@psi.edu